Identification and characterization of the lipid-binding property of GrlR, a locus of enterocyte effacement regulator.
نویسندگان
چکیده
Lipocalins are a broad family of proteins identified initially in eukaryotes and more recently in Gram-negative bacteria. The functions of lipocalin or lipid-binding proteins are often elusive and very diverse. Recently, we have determined the structure of GrlR (global regulator of LEE repressor), which plays a key role in the regulation of LEE (locus of enterocyte effacement) proteins. GrlR adopts a lipocalin-like fold that is composed of an eight-stranded beta-barrel followed by an alpha-helix at the C-terminus. GrlR has a highly hydrophobic cavity region and could be a potential transporter of lipophilic molecules. To verify this hypothesis, we carried out structure-based analysis of GrlR, determined the structure of the lipid-GrlR complex and measured the binding of lipid to recombinant GrlR by ITC (isothermal titration calorimetry). In addition, we identified phosphatidylglycerol and phosphatidylethanolamine as the endogenously bound lipid species of GrlR using electrospray-ionization MS. Furthermore, we have shown that the lipid-binding property of GrlR is similar to that of its closest lipocalin structural homologue, beta-lactoglobulin. Our studies demonstrate the hitherto unknown lipid-binding property of GrlR.
منابع مشابه
QseA and GrlR/GrlA regulation of the locus of enterocyte effacement genes in enterohemorrhagic Escherichia coli.
Transcription of the locus of enterocyte effacement (LEE) genes in enterohemorrhagic Escherichia coli (EHEC) is regulated by the LEE-encoded Ler and GrlR/GrlA proteins as well as the non-LEE-encoded regulator QseA. This work demonstrates that GrlR/GrlA activate LEE2 transcription in a Ler-independent fashion, whereas transcription of grlRA is activated by QseA in both Ler-dependent and -indepen...
متن کاملStructure of GrlR and the Implication of Its EDED Motif in Mediating the Regulation of Type III Secretion System in EHEC
Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expre...
متن کاملGrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region.
BACKGROUND AND PURPOSE The locus of enterocyte effacement (LEE) of enterohemorrhagic Escherichia coli (EHEC) O157:H7 encodes virulence factors that lead cooperatively to an attaching and effacing lesion on host large intestine cells. Global regulator of LEE activator (GrlA), encoded by the open reading frame 3 in the EHEC LEE, is known to serve as a positive regulator of LEE expression. However...
متن کاملMolecular characterization of GrlA, a specific positive regulator of ler expression in enteropathogenic Escherichia coli.
Enteropathogenic Escherichia coli (EPEC) infections are characterized by the formation of attaching and effacing (A/E) lesions on the surfaces of infected epithelial cells. The genes required for the formation of A/E lesions are located within the locus of enterocyte effacement (LEE). Ler is the key regulatory factor controlling the expression of LEE genes. Expression of the ler gene is positiv...
متن کاملClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli.
Expression of the type III protein secretion system (TTSS), encoded in the locus of enterocyte effacement (LEE) of enterohemorrhagic Escherichia coli (EHEC), has been shown to be controlled by various regulators. In a search for additional regulatory genes, we identified a DNA fragment containing clpX and clpP that has a positive regulatory effect on LEE expression in EHEC O157. The expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 420 2 شماره
صفحات -
تاریخ انتشار 2009